首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20325篇
  免费   1737篇
  国内免费   744篇
电工技术   333篇
技术理论   1篇
综合类   952篇
化学工业   9996篇
金属工艺   341篇
机械仪表   318篇
建筑科学   924篇
矿业工程   132篇
能源动力   463篇
轻工业   633篇
水利工程   69篇
石油天然气   2172篇
武器工业   243篇
无线电   1546篇
一般工业技术   4138篇
冶金工业   245篇
原子能技术   70篇
自动化技术   230篇
  2024年   73篇
  2023年   320篇
  2022年   264篇
  2021年   498篇
  2020年   541篇
  2019年   559篇
  2018年   505篇
  2017年   671篇
  2016年   674篇
  2015年   667篇
  2014年   1021篇
  2013年   1136篇
  2012年   1268篇
  2011年   1430篇
  2010年   1058篇
  2009年   1122篇
  2008年   1003篇
  2007年   1286篇
  2006年   1335篇
  2005年   1055篇
  2004年   945篇
  2003年   872篇
  2002年   790篇
  2001年   707篇
  2000年   577篇
  1999年   487篇
  1998年   446篇
  1997年   300篇
  1996年   195篇
  1995年   164篇
  1994年   179篇
  1993年   150篇
  1992年   115篇
  1991年   86篇
  1990年   41篇
  1989年   36篇
  1988年   31篇
  1987年   18篇
  1986年   20篇
  1985年   51篇
  1984年   41篇
  1983年   31篇
  1982年   28篇
  1981年   3篇
  1980年   4篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
971.
以亚甲基蓝为模板分子,丙烯酰胺为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂.采用沉淀聚合法制备了亚甲基蓝分子印迹聚合物微球(MIP)。用扫描电镜表征了MIP的形貌,结果显示制备的MIP的粒径为1~3μm,粒径较为均匀。考察了MIP对亚甲基蓝的吸附性能,结果表明其吸附动力学过程可以用假二级吸附速率方程来描述,MIP对亚甲基蓝的最大吸附量为27.1mg/g,吸附效果较好,可以用于染料废水中亚甲基蓝的分离富集。  相似文献   
972.
制备了聚合物/表面活性剂二元乳状液,考察了聚合物相对分子质量、聚合物质量浓度、表面活性剂质量分数、油水比(原油与聚合物/表面活性剂二元乳状液体积比)对二元乳状液稳定性的影响。结果表明:提高表面活性剂的质量分数和聚合物的质量浓度,采用相对分子质量较低的聚合物,降低油水比,有利于二元乳状液的稳定。  相似文献   
973.
974.
Fluids with both attractions and repulsions among its constituents can exist in multiple states depending on nature of the interactions. An external flow can induce such systems to transition between the different states, such as the globule‐stretch transition for polymers in poor solvents. Brownian dynamics simulations of a dilute solution of polymers and colloids interacting via short‐ranged potentials are presented. For some values of the strength and range of interactions, compact structures of polymers and colloids are formed. An external flow is capable of pulling these globules apart, causing the polymers to stretch at a critical shear rate. In oscillatory shear, the shear rate can cycle between being above and below this critical shear rate leading to interesting dynamics. These dynamics are quantified using the rheological response in large amplitude oscillatory shear. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1365–1371, 2014  相似文献   
975.
Canolol‐enriched extracts obtained from the extraction of fluidized bed treated canola meal with supercritical carbon dioxide were added to high‐oleic canola oil in different concentrations (200, 500 and 750 mg/kg). After 30 h of deep‐fat frying, oils fortified with canolol‐enriched extracts showed a two to three times better frying performance in comparison to the commonly used antioxidants (TBHQ, 200 mg/kg; rosemary extract, 40 and 200 mg/kg) and a control without antioxidants with regards to the formation of di‐ and polymer triacylglycerols, total polar compounds, secondary degradation products (anisidine value) and the iodine value. The canolol‐enriched extracts were also able to slow down the degradation of α‐ and γ‐tocopherol during frying resulting in significant amounts of tocopherols after 30 h of frying in comparison to the other oils. The influence of the canolol‐enriched extracts indicated strongly concentration‐dependent performance. With increasing concentration of the extract, the thermal stability of the fortified oil was improved. The only disadvantage of the addition of the extracts was an increase in the initial acid value, but within the frying time, only oil fortified with 750 mg canolol‐enriched extract/kg reached the limit given in different countries.  相似文献   
976.
977.
Highly monodisperse polystyrene nanoparticles with mean diameters of less than 100 nm are synthesized via aqueous emulsion polymerization using an amphoteric initiator (VA-057) in the presence of sub-millimolar concentrations of anionic surfactant. Since the net charge on the initiator is almost zero at neutral pH, the resultant latex particle size is mainly determined by surfactant adsorption. Polymerizations were performed in the presence of a range of anionic surfactants with differing critical micelle concentrations (CMC) by varying the concentrations of surfactant, initiator and monomer, and also the ionic strength. Sodium dodecyl benzene sulfonate (SDBS), sodium hexadecyl sulfate (SHS), and sodium octadecyl sulfate (SOS) have relatively low CMCs and so enable formation of highly monodisperse nanoparticles at relatively low (sub-millimolar) surfactant concentrations, CS (i.e. below the CMC in each case). Empirically, it was found that the particle number, Np, and coefficient of variation of the particle size, CV, were strongly dependent on the CS/CMC ratio: Np increased almost in proportion with the square of this ratio, while the CV exhibited a minimum at approximately CS/CMC = 0.20. Higher ionic strength reduced the particle size, which is consistent with the above relationship because the addition of salt lowers the CMCs of ionic surfactants. Polymer latex particles produced using such formulations form highly regular, close-packed colloidal arrays.  相似文献   
978.
Ionic liquid-functionalized mesoporous polymeric networks with specific surface area up to 935 m2/g have been successfully synthesized one pot by solvothermal copolymerization of divinylbenzene and monomeric ionic liquids. The as-obtained polymers exhibit a monolithic structure featuring large pore volumes, an abundant mesoporosity and an adjustable content of ionic liquids. The effect of the reaction conditions on the pore structure has been studied in detail. These poly(ionic liquid)-based porous networks (PILPNs) have then been employed as precursors in two distinct applications, namely organocatalysis and production of microporous carbon monoliths. Selected organocatalyzed reactions, including carbonatation of propylene oxide by cycloaddition with carbon dioxide, benzoin condensation, and cyanosilylation of benzaldehyde have been readily triggered by PILPNs acting as crosslinked polymer-supported (pre)catalysts. The two latter reactions required the prior deprotonation of the imidazolium salt units with a strong base to successfully generate polymer-supported N-heterocyclic carbenes, referred to as poly(NHC)s. Facile recycling and reuse of polymer-supported (pre)catalysts was achieved by simple filtration owing to the heterogeneous reaction conditions. Furthermore, PILPNs could be easily converted into microporous carbon monoliths via CO2 activation.  相似文献   
979.
Two donor–acceptor-type alternating copolymers consisting of 2,1,3-benzoselenadiazole and carbazole derivatives with thiophene or selenophene π-bridges were synthesized by Suzuki cross-coupling polymerization, and their optical, electrochemical, and photovoltaic properties were compared. The selenophene π-bridged copolymer (PCz-DSeBSe) exhibited a smaller band-gap (1.82 eV) than the thiophene-bridged polymer (PCz-DTBSe; 1.89 eV). PCz-DSeBSe also showed a deeper highest occupied molecular orbital energy level (−5.36 eV) than PCz-DTBSe (−5.20 eV). Moreover, the PCz-DSeBSe thin film showed higher crystallinity and hole mobility than the PCz-DTBSe thin film. Organic photovoltaic devices were fabricated using the polymers as the donors and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor. The device using PCz-DSeBSe showed a higher open circuit voltage (Voc), short circuit current density (Jsc), and power conversion efficiency (PCE) than that using PCz-DTBSe. The fabricated indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/PCz-DSeBSe:PC71BM/LiF/Al device showed the maximum PCE of 2.88% with a Jsc of 7.87 mA/cm2, an Voc of 0.80 V, and a fill factor of 0.50 under AM 1.5G irradiation (100 mW/cm2).  相似文献   
980.
The objective of this study is to develop a new biocomposite material with high deformation ability. In this regard, the thermal, rheological, and thermophysical properties of this new composite were characterized as a function of temperature and filler concentration. High density polyethylene (HDPE) was the matrix of this new composite which was reinforced with six sawdust concentrations 0%, 20%, 30%, 40%, 50%, and 60%. Maleic anhydride grafted polyethylene (PE‐g‐MA) was used as coupling agent. Addition of sawdust with PE‐g‐MA increased significantly the complex viscosity, the storage modulus (G′), and loss modulus (G″) of the matrix. The superposition of the complex viscosity curves using temperature dependent shift factor, allowed the construction of a viscosity master curve covering a wide range of temperatures. Arrhenius law was used for the relationship of the shift factor to temperature. Furthermore, method of Van Gurp and Palmen (tan delta vs. G*) is also used to control the time–temperature superposition. The experimental results can be well fitted with the cross rheological model which allowed the prediction of the thermorheological properties of the composites over a broad frequency range. By increasing wood concentration, both the activation energy and relaxation time for the biocomposites determined using, respectively, the Arrhenius law and the cole–cole rule increased. By contrast, specific heat of the matrix decreased with sawdust addition while its dimensional stability improved. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40495.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号